
Hands-on Labs:

Running Qiskit Programs on IBMQ
Introduction
This hands-on lab provides step-by-step instructions for running quantum circuits using Qiskit
on IBM Quantum Experience (IBMQ). By the end of this lab, students will be able to:

●​ Set up an IBMQ account and access quantum processors.
●​ Write and execute quantum circuits using Qiskit.
●​ Submit jobs to real quantum hardware and analyze results.

1. Setting Up IBMQ
Step 1: Create an IBM Quantum Experience Account

1.​ Go to IBM Quantum Experience.
2.​ Click on Sign Up and create an account.
3.​ Verify your email and log in to the dashboard.
4.​ Navigate to API Tokens under Account Settings.
5.​ Copy your API token for later use.

Step 2: Install Qiskit

Before proceeding, ensure that Python and Qiskit are installed. Open a terminal or command
prompt and run:

pip install qiskit
pip install qiskit-ibm-runtime

Step 3: Authenticate with IBMQ

1.​ Open a Python script or Jupyter Notebook.
2.​ Run the following code to save your API token:

from qiskit import IBMQ
IBMQ.save_account('YOUR_API_TOKEN')
IBMQ.load_account()

https://quantum-computing.ibm.com/

3.​ This step enables access to IBMQ’s quantum processors.

2. Writing and Running a Quantum Circuit
Step 4: Create a Simple Quantum Circuit

Open a Python script or Jupyter Notebook and enter:

from qiskit import QuantumCircuit, transpile, assemble, Aer, execute
from qiskit.providers.ibmq import IBMQ

Load IBMQ account
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
backend = provider.get_backend('ibmq_lima')

Create a simple quantum circuit
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0,1], [0,1])

Transpile and execute the circuit
transpiled_qc = transpile(qc, backend)
job = backend.run(assemble(transpiled_qc))
print("Job ID:", job.job_id())

Step 5: Monitor Job Status

After submitting the job, you can check its status:

from qiskit.tools.monitor import job_monitor
job_monitor(job)

Step 6: Retrieve and Analyze Results

Once the job is complete, retrieve results and visualize output:

result = job.result()
counts = result.get_counts()
print("Measurement Results:", counts)

from qiskit.visualization import plot_histogram

plot_histogram(counts)

3. Submitting Custom Circuits
Step 7: Modify and Submit a Custom Circuit

1.​ Modify the circuit by adding different quantum gates:

qc = QuantumCircuit(3, 3)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.measure([0,1,2], [0,1,2])

2.​ Re-run the execution steps above.

4. Summary and Further Exploration
●​ Experiment with different quantum gates and circuit depths.
●​ Try executing circuits on different IBMQ backends.
●​ Explore Qiskit’s advanced features, such as noise models and pulse programming.

This lab provides a practical foundation for running quantum programs on IBMQ. Future labs will
explore more complex quantum algorithms and hybrid quantum-classical workflows.

	Hands-on Labs:
	Running Qiskit Programs on IBMQ
	Introduction
	1. Setting Up IBMQ
	Step 1: Create an IBM Quantum Experience Account
	Step 2: Install Qiskit
	Step 3: Authenticate with IBMQ

	2. Writing and Running a Quantum Circuit
	Step 4: Create a Simple Quantum Circuit
	Step 5: Monitor Job Status
	Step 6: Retrieve and Analyze Results

	3. Submitting Custom Circuits
	Step 7: Modify and Submit a Custom Circuit

	4. Summary and Further Exploration

