
Hands-on Labs:

Running Qiskit Programs on IBMQ
Introduction
This hands-on lab provides step-by-step instructions for running quantum circuits using Qiskit
on IBM Quantum Experience (IBMQ). By the end of this lab, students will be able to:

● Set up an IBMQ account and access quantum processors.
● Write and execute quantum circuits using Qiskit.
● Submit jobs to real quantum hardware and analyze results.

1. Setting Up IBMQ
Step 1: Create an IBM Quantum Experience Account

1. Go to IBM Quantum Experience.
2. Click on Sign Up and create an account.
3. Verify your email and log in to the dashboard.
4. Navigate to API Tokens under Account Settings.
5. Copy your API token for later use.

Step 2: Install Qiskit

Before proceeding, ensure that Python and Qiskit are installed. Open a terminal or command
prompt and run:

pip install qiskit
pip install qiskit-ibm-runtime

Step 3: Authenticate with IBMQ

1. Open a Python script or Jupyter Notebook.
2. Run the following code to save your API token:

from qiskit import IBMQ
IBMQ.save_account('YOUR_API_TOKEN')
IBMQ.load_account()

https://quantum-computing.ibm.com/

3. This step enables access to IBMQ’s quantum processors.

2. Writing and Running a Quantum Circuit
Step 4: Create a Simple Quantum Circuit

Open a Python script or Jupyter Notebook and enter:

from qiskit import QuantumCircuit, transpile, assemble, Aer, execute
from qiskit.providers.ibmq import IBMQ

Load IBMQ account
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
backend = provider.get_backend('ibmq_lima')

Create a simple quantum circuit
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0,1], [0,1])

Transpile and execute the circuit
transpiled_qc = transpile(qc, backend)
job = backend.run(assemble(transpiled_qc))
print("Job ID:", job.job_id())

Step 5: Monitor Job Status

After submitting the job, you can check its status:

from qiskit.tools.monitor import job_monitor
job_monitor(job)

Step 6: Retrieve and Analyze Results

Once the job is complete, retrieve results and visualize output:

result = job.result()
counts = result.get_counts()
print("Measurement Results:", counts)

from qiskit.visualization import plot_histogram

plot_histogram(counts)

3. Submitting Custom Circuits
Step 7: Modify and Submit a Custom Circuit

1. Modify the circuit by adding different quantum gates:

qc = QuantumCircuit(3, 3)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.measure([0,1,2], [0,1,2])

2. Re-run the execution steps above.

4. Summary and Further Exploration
● Experiment with different quantum gates and circuit depths.
● Try executing circuits on different IBMQ backends.
● Explore Qiskit’s advanced features, such as noise models and pulse programming.

This lab provides a practical foundation for running quantum programs on IBMQ. Future labs will
explore more complex quantum algorithms and hybrid quantum-classical workflows.

	Hands-on Labs:
	Running Qiskit Programs on IBMQ
	Introduction
	1. Setting Up IBMQ
	Step 1: Create an IBM Quantum Experience Account
	Step 2: Install Qiskit
	Step 3: Authenticate with IBMQ

	2. Writing and Running a Quantum Circuit
	Step 4: Create a Simple Quantum Circuit
	Step 5: Monitor Job Status
	Step 6: Retrieve and Analyze Results

	3. Submitting Custom Circuits
	Step 7: Modify and Submit a Custom Circuit

	4. Summary and Further Exploration

